Plik:Escher like tiling Basilica Julia set.png

Treść strony nie jest dostępna w innych językach.
Z Wikibooks, biblioteki wolnych podręczników.

Rozmiar pierwotny(2000 × 2000 pikseli, rozmiar pliku: 567 KB, typ MIME: image/png)

Ten plik znajduje się w Wikimedia Commons i może być używany w innych projektach. Poniżej znajdują się informacje ze strony opisu tego pliku.

Opis

Opis
English: Escher like tiling Basilica Julia set. Compare Fig 4.12 page 185 from book : The Science of Fractal Images by MF Barnsley et al.[1]
Data
Źródło own work with help of Michael Sargent
Autor Adam majewski
Inne wersje

Licencja

Ja, właściciel praw autorskich do tego dzieła, udostępniam je na poniższej licencji
w:pl:Licencje Creative Commons
uznanie autorstwa na tych samych warunkach
Wolno:
  • dzielić się – kopiować, rozpowszechniać, odtwarzać i wykonywać utwór
  • modyfikować – tworzyć utwory zależne
Na następujących warunkach:
  • uznanie autorstwa – musisz określić autorstwo utworu, podać link do licencji, a także wskazać czy utwór został zmieniony. Możesz to zrobić w każdy rozsądny sposób, o ile nie będzie to sugerować, że licencjodawca popiera Ciebie lub Twoje użycie utworu.
  • na tych samych warunkach – Jeśli zmienia się lub przekształca niniejszy utwór, lub tworzy inny na jego podstawie, można rozpowszechniać powstały w ten sposób nowy utwór tylko na podstawie tej samej lub podobnej licencji.

Pascal src code

Program Esher_Julia;

{možesz zmieniac:  c_re_int, c_im_int
                    skala }
{ mozna zmieniac skale dla x i y niezaleznie}

 { ekran : E= (XeMin;XeMax)x(YeMinx(YeMax)
   plaszczyzna  z = (xMin:xMax)x(yMin;yMax)
   skalowanie liniowe pˆaszczyzny Z na ekran
   dla kazdego punktu plaszczyzny z=x+y*i
   obliczmy ciag Nmax punktow Zn: Z0=x+y*i; Z(n+1) = (Zn*Zn) + c
   w zaležnosci od spelnienia warunku okreslamy kolor punktu z
   efektem jest zbior Julii dla funkcji z*z+c}
 uses crt,graph,
      {moje modul}
      grafM,
      KolorM,
      bmpM;

 var color:longInt;
     Xe,   {xEkranu,yEkranu = wspolrzedne pixeli}
     Ye,
     dXe,dYe:integer;  {szerokosc i wysokosc ekranu}
     KrokX,KrokY:extended;
     y,x,               { z=x+y*i }
     tx,ty,
     xTemp :extended;   { Z(n+1)=Zn*Zn+c ;  c(Cx,Cy) }
     n,tn:LongInt;    { numer kolejnej iteracji= punktu ciagu Zn }

 const
       {c=0+0*i; circle }
       C_re=-0.0;    {wspolczynnik  funkcji F(z)=(z*z)+c }
       C_im=0.0;    { c jest liczba zespolona : c=c_re+c_im*i  }
       {target set C_int }
       C_re_int=-1.1;    {wspolczynnik  funkcji F(z)=(z*z)+c_int }
       C_im_int=-0.001;    { c jest liczba zespolona : c_int=c_re_int+c_im_int*i  }

       skala=250.10;     {standard 15 ; sproboj: -2.0; 1.0 ; 1000.0;  }

       xMin=-1.0;
       xMax=1.0;
       dx=xMax-xMin;

       yMin=-1.0;
       yMax=1.0;
       dy=yMax-yMin;

       YeMax=700;      { liczba pixeli w pionie }
       YeMin=0;
       XeMax=YeMax;              { liczba pixeli w poziomie }
       XeMin=0;

       nMax=100;            { maksymaln liczba iteracji }
       BailOut=4;
  {--------------------------------------------------------------}
  procedure wstep;
      begin       { wstep }

       dYe:=YeMax-YeMin+1;
       Kroky:=dy/dYe;


       dXe:=XeMax-XeMin+1; {liczba punktow ekranu w poziomie}
       Krokx:=dx/dXe;
      end; {wstep}
  {---------------------------------------------------}
  procedure bmp(w,h:integer);
    begin
                    {create new file on a disk in a given directory with given name }
    Assign(bmpFile,DefaultDirectory+DefaultbmpFileName+DefaultExtension); {  }
    ReWrite(bmpFile,1); {ustal rozmiar zapisu na 1 bajt}          { }

    {fill the Headers}
    with bmpInfoHeader,bmpFileHeader do
     begin
      ID:=19778;
      InfoheaderSize:=40;
      width:=w;
      height:=h;
      BitsPerPixel:=32;
      BytesPerPixel:=BitsPerPixel div 8;
      reserved:=0;
      bmpDataOffset:=InfoHeaderSize+bmpFileHeaderSize;
      planes:=1;
      compression:=bi_RGB;
      XPixPerMeter:=0;
      YPixPerMeter:=0;
      NumbColorsUsed:=0;
      NumbImportantColors:=0;


      RowSizeInBytes:=(Width*BytesPerPixel); {only for >=8 bits per pixel}
      bmpDataSize:=height*RowSizeinBytes;
      FileSize:=InfoHeaderSize+bmpFileHeaderSize+bmpDataSize;

      {copy headers to disk file}
      BlockWrite(bmpFile,bmpFileHeader,bmpFileHeaderSize);
      BlockWrite(bmpFile,bmpInfoHeader,infoHeaderSize);
  end;
  end;

Begin {------------------------------------------------------------------}
   OpenSvga; { 1280x1024x256     svga256.bgi}

   wstep;

   bmp(dXe,dYe);

   for Ye:=YeMax DownTo YeMin do
     for Xe:=XeMax DownTo XeMin do
        begin
              {okre˜la rzeczywiste wspolrzedne punktu z=x+y*i }
              x:=xMin+(Xe-XeMin)*Krokx;
              y:=yMin+(Ye-YeMin)*Kroky;

              n:=0;

              {petla zewnetrzna;  c=0+0*i}
              repeat {iteracja punktu Z(n+1)=(Zn*Zn)+C }
                  inc(n);
                  xTemp:=x*x-y*y+C_re;
                  y:=2*x*y+C_im;
                  x:=xTemp;

                  Begin { petla wewnetrzna}
                    tn:=0;
                    tx:=x*skala;
                    ty:=y*skala;
                    repeat
                      inc(tn);
                      xTemp:=(tx+ty)*(tx-ty)+C_re_int;
                      ty:=2*tx*ty+C_im_int;
                      tx:=xTemp;

                    until (tn>=nMax) or (ty*ty+tx*tx>BailOut);
                    if tn=nMax then break;
                  end;

                  If KeyPressed then exit;
              until (n>=nMax) or (y*y+x*x>BailOut);


  { ................okre˜la kolor...................................}

         if n=1 then  color:=red {target set }
               else  if odd(n) then color:=black
                               else color:=white;

        if sqrt(sqr(x)+sqr(y))>1 then color:=black; {out of the circle}
  {..................rysuje punkt  na ekranie...............}

          PutPixel(Xe,Ye,color);
 { zapisuje bitmapŠ...................................................}
          {convert color to color32}
           case color of
             black:begin
                     color32.Blue:=0;
                     color32.Green:=0;
                     color32.Red:=0;
                     color32.Alfa:=0;
                   end;
             white:begin
                     color32.Blue:=255;
                     color32.Green:=255;
                      color32.Red:=255;
                      color32.Alfa:=0;
                   end;
             red:begin
                   color32.Blue:=0;
                   color32.Green:=0;
                   color32.Red:=255;
                   color32.Alfa:=0;
                 end;
           end; {case}
          BlockWrite(bmpFile,color32,4);
      end; {Xe}

   Close(bmpFile);
   repeat until KeyPressed;
  {CloseGraph;}
End. {cialo}

c src code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  


  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >a.txt

  ----------------------
  
 real	0m19,809s
user	2m26,763s
sys	0m0,161s



 {c=0+0*i; circle }
       C_re=-0.0;    {wspolczynnik  funkcji F(z)=(z*z)+c }
       C_im=0.0;    { c jest liczba zespolona : c=c_re+c_im*i  }
       {target set C_int }
       C_re_int=-1.1;    {wspolczynnik  funkcji F(z)=(z*z)+c_int }
       C_im_int=-0.001;    { c jest liczba zespolona : c_int=c_re_int+c_im_int*i  }

       skala=250.10;     {standard 15 ; sproboj: -2.0; 1.0 ; 1000.0;  }

       xMin=-1.0;
       xMax=1.0;
       dx=xMax-xMin;

       yMin=-1.0;
       yMax=1.0;
      


  

*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP

/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 10000;	//  
// The size of array has to be a positive constant integer 
static unsigned int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
//unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


static const double ZxMin = -1.0;	//-0.05;
static const double ZxMax =  1.0;	//0.75;
static const double ZyMin = -1.0;	//-0.1;
static const double ZyMax =  1.0;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
double complex c = 0.0;		// parameter of function fc(z)=z^2 + c
//target set C_int }
double complex tc =-1.0; //   {wspolczynnik  funkcji F(z)=(z*z)+c_int }

double scale = 10.0; //    {standard 15 ; sproboj: -2.0; 1.0 ; 1000.0;  }







int Period = 2;


static  int iterMax = 255;	//iHeight*100;

static double ER = 2.0;		// EscapeRadius for bailout test 
//double EscapeRadius=1000000; // = ER big !!!!
// SAC/J
//double lnER; // ln(ER)
//int i_skip = 2; // exclude (i_skip+1) elements from average
//unsigned char s = 7; // stripe density

//double BoundaryWidth = 3.0; // % of image width  
//double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;




/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;





/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy) {
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ( int ix, int iy){
  double Zx = GiveZx(ix);
  double Zy = GiveZy(iy);
	
  return Zx + Zy*I;
	
	


}




// ****************** DYNAMICS = trap tests ( target sets) ****************************



// bailout test
// z escapes when 
// abs(z)> ER or cabs2(z)> ER2 
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time

int Escapes(complex double z){
 // here target set (trap) is the exterior  circle with radsius = ER ( EscapeRadius) 
  // with ceter = origin z= 0
  // on the Riemann sphere it is a circle with point at infinity as a center  
   
  if (cabs(z)>ER) return 1;
  return 0;
}








/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}







// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************

/*

Begin { petla wewnetrzna}
                    tn:=0;
                    tx:=x*skala;
                    ty:=y*skala;
                    repeat
                      inc(tn);
                      xTemp:=(tx+ty)*(tx-ty)+C_re_int;
                      ty:=2*tx*ty+C_im_int;
                      tx:=xTemp;

                    until (tn>=nMax) or (ty*ty+tx*tx>BailOut);
                    if tn=nMax then break;
                  end;




*/


int EscapeTimeEscher(complex double z){

	int nMax = iterMax;
	int n;
	//double cabsz;
	
	z = z*scale; //

  	for (n=0; n <= nMax && cabs(z)<ER; n++){ //forward iteration
		
    		//if (cabsz > ER) break; // escaping
    		//if (cabsz< PixelWidth) break; // fails into finite attractor = interior
  			
   		z = z*z + tc;   /* forward iteration : reversed basilica */ 
   	
   	}
  
  return n;



}







unsigned char ComputeColorOfLSM(complex double z){

 	int nMax = iterMax;
  	//double cabsz;
  	unsigned char iColor;
  	complex double tz;
  
	
  	int n = 0;
  	int tn = 0;
  	
  	double size = 0.0;
  	double tsize = 0.0; 
  	
  	
	size = cabs(z);
  	while (n < nMax && (size < ER)){ //forward iteration
		
		// inner loop
		tn = 0;
		tsize = 0.0;
		tz = z*scale;
		while (tn < nMax && (tsize < ER)){ //forward iteration
			tz = tz*tz + tc;   /* forward iteration complex quadratic polynomial */
			tsize = cabs(tz);
			
			tn++;
			}
   		if (tn == nMax) break;
   		//
   		z = z*z;   /* forward iteration complex quadratic polynomial */
		size = cabs(z);
   		n++;
   	
   	
   	
  	}
  	if (tn == nMax) // inside circle 
  		{
  			if (n==0) 
  				{iColor = 255;} // target set
  				else iColor = (n*30) % 255;
  		} 
  		else iColor = iColorOfExterior; // outside the circle
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfLSM(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfLSM (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfLSM(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBD(complex double z){

 int nMax = 255;
  double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > ER) break; // esacping
    	if (cabsz< PixelWidth) break; // fails into finite attractor = interior
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (creal(z)>0.0) 
  	iColor = 255; 
  	else iColor = 0;
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBD(A, ix, iy);	//  
  }

  return 0;
}







 
 
 
 
 
 
 
 
 
 
 
 
 
 








// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [100]; /* name of file */
  snprintf(name, sizeof name, "%.1f", k); /*  */
  char *filename =strncat(name,".pgm", 4);
  
  
  
  // save image to the pgm file 
  fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode 
  fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue);  // write header to the file
  fwrite(A,iSize,1,fp);  // write array with image data bytes to the file in one step 
  fclose(fp); 
  
  // info 
  printf("File %s saved ", filename);
  if (comment == NULL || strlen(comment) ==0)  
    printf("\n");
  else printf (". Comment = %s \n", comment); 

  return 0;
}







int PrintInfoAboutProgam()
{

  
  // display info messages
  printf ("Numerical approximation of Escher like tilings of Julia sets by Michael Sargent for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal(tc), cimag(tc));
  
  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %f \n", PixelWidth);
  
  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %d \n", iterMax);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //
  printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is diplayed in the console 
  return 0;
}






// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int setup ()
{

  printf ("setup start\n");
  c = 0.0; // 
  
  
  
  
	
  /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...
	
   
	
  
  //ER2 = ER * ER; // for numerical optimisation in iteration
  //lnER = log(EscapeRadius); // ln(ER) 
  
   	
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));
  edge = malloc (iSize * sizeof (unsigned char));
  //edge2 = malloc (iSize * sizeof (unsigned char));
  	
  if (data == NULL || edge == NULL ){
    fprintf (stderr, " Could not allocate memory");
    return 1;
  }

  
 	
  
  //BoundaryWidth = 20.0*iWidth/2000.0  ; //  measured in pixels ( when iWidth = 2000) 
  //distanceMax = BoundaryWidth*PixelWidth;
  
  
  
  printf (" end of setup \n");
	
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(){


  printf (" allways free memory (deallocate )  to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);
  
  PrintInfoAboutProgam();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main () {
  setup ();
  
  
   
  
  
  //DrawImagerOfBD(data);
  //SaveArray2PGMFile (data, iWidth+0.2, "BD/J");
  
  //ComputeBoundaries(data, edge);
  //SaveArray2PGMFile (edge, iWidth+0.3, "boundaries of BD/J");
    
  DrawImagerOfLSM(data);
  SaveArray2PGMFile (data, iWidth+scale +0.6, "LSM/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+scale+0.7, "boundaries of LSM/J");
  
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data, iWidth+scale+0.8, "LSM/J with boundaries");
  
  
  
  end();

  return 0;
}
  1. The Science of Fractal Images by Michael F. Barnsley, Robert L. Devaney, Benoit B. Mandelbrot, Heinz-Otto Peitgen, Dietmar Saupe, Richard F. Voss

Podpisy

Dodaj jednolinijkowe objaśnienie tego, co ten plik pokazuje
Escher like tiling Basilica Julia set

Obiekty przedstawione na tym zdjęciu

przedstawia

Historia pliku

Kliknij na datę/czas, aby zobaczyć, jak plik wyglądał w tym czasie.

Data i czasMiniaturaWymiaryUżytkownikOpis
aktualny20:46, 12 kwi 2020Miniatura wersji z 20:46, 12 kwi 20202000 × 2000 (567 KB)Soul windsurferUploaded own work with UploadWizard

Poniższa strona korzysta z tego pliku:

Globalne wykorzystanie pliku

Ten plik jest wykorzystywany także w innych projektach wiki:

Metadane