Autor:Mirosław Makowiecki Absolwent UMCS Fizyki Komputerowej Uniwersytetu Marii Curie-Skłodowskiej w Lublinie Email: miroslaw(kropka)makowiecki(małpa)gmail(kropka)pl Dotyczy: książki, do której należy ta strona, oraz w niej zawartych stron i w nich podstron, a także w nich kolumn, wraz z zawartościami. Użytkownika książki, do której należy ta strona, oraz w niej zawartych stron i w nich podstron, a także w nich kolumn, wraz z zawartościami nie zwalnia z odpowiedzialności prawnoautorskiej nieprzeczytanie warunków licencjonowania. Umowa prawna:Creative Commons: uznanie autorstwa oraz miejsca pochodzenia książki i jej jakikolwiek części, a także treści, teksty, tabele, wykresy, rysunki, wzory i inne elementy oraz ich części zawarte w książce, i tą książkę, nawet w postaci przerobionej nie można umieszczać w jakikolwiek formie na czasopismach naukowych, archiwach prac, itp. Autor tej książki dołożył wszelką staranność, aby informacje zawarte w książce były poprawne i najwyższej jakości, jednakże nie udzielana jest żadna gwarancja, czy też rękojma. Autor nie jest odpowiedzialny za wykorzystanie informacji zawarte w książce nawet jeśli wywołaby jakąś szkodę, straty w zyskach, zastoju w prowadzeniu firmy, przedsiębiorstwa lub spółki bądź utraty informacji niezależnie, czy autor (a nawet Wikibooks) został powiadomiony o możliwości wystąpienie szkód. Informacje zawarte w książce mogą być wykorzystane tylko na własną odpowiedzialność.
Niezmienniczość ciśnienia przy przejściu z jednego układu odniesienia inercjalnego do drugiego[edytuj]
Siła działająca na ciało ze strony ośrodka przy ciśnieniu jest równa:
(32.1)
Transformacja siły z układu z ciałem poruszający się z prędkością dążącą do zera do układu, w którym to ciało porusza się z inną prędkością, przedstawia się wzorem na podstawie (19.7):
(32.2)
Napiszmy obliczenia dla siły równoległej wykorzystując transformacje wektorów równoległych siły i nieskończenie małej powierzchni:
(32.3)
A dla siły prostopadłej wykorzystując wykorzystując transformacje wektorów prostopadłych siły i nieskończenie małej powierzchni:
(32.4)
Stąd mamy wzór na siłę infinitezymalną dodając siły prostopadłe i równoległe nieskończenie małe do siebie, wtedy otrzymujemy definicję siły w układzie odniesienia poruszającą się z prędkością taką by w niej ciało, na którą działa ta siła, poruszała się z jakąś prędkością:
(32.5)
Stąd na podstawie (32.5) ciśnienie nie zmienia się przy przejściu z jednego układu odniesienia inercjalnego do drugiego.