Przejdź do zawartości

Plik:Color complex plot.jpg

Treść strony nie jest dostępna w innych językach.
Z Wikibooks, biblioteki wolnych podręczników.

Rozmiar pierwotny (800 × 800 pikseli, rozmiar pliku: 203 KB, typ MIME: image/jpeg)

Ten plik znajduje się w Wikimedia Commons i może być używany w innych projektach. Poniżej znajdują się informacje ze strony opisu tego pliku.

Opis

Opis Color plot of complex function (x^2-1) * (x-2-I)^2 / (x^2+2+2I), hue represents the argument, sat and value represents the modulus
Data
Źródło Praca własna
Autor Claudio Rocchini
Licencja
(Ponowne użycie tego pliku)
CC-BY 2.5
Inne wersje

Source Code

C++

This is the complete C++ source code for image generation (you must change the fun funcion to plot another one). You need some complex class implementation.

#include <complex>
#include <fstream>

using namespace std;
 
const double PI = 3.1415926535897932384626433832795;
const double E  = 2.7182818284590452353602874713527;
 
void SetHSV(double h, double s, double v, unsigned char color[3]) {
    double r, g, b;
    if(s==0)
        r = g = b = v;

    else {
        if(h==1) h = 0;
        double z = floor(h*6); int i = int(z);
        double f = double(h*6 - z);
        double p = v*(1-s);
        double q = v*(1-s*f);
        double t = v*(1-s*(1-f));

        switch(i){
        case 0: r=v; g=t; b=p; break;
        case 1: r=q; g=v; b=p; break;
        case 2: r=p; g=v; b=t; break;
        case 3: r=p; g=q; b=v; break;
        case 4: r=t; g=p; b=v; break;
        case 5: r=v; g=p; b=q; break;
        }
    }
    int c;
    c = int(256*r); if(c>255) c = 255; color[0] = c;
    c = int(256*g); if(c>255) c = 255; color[1] = c;
    c = int(256*b); if(c>255) c = 255; color[2] = c;
}
 
complex<double> fun(complex<double>& c ){
    const complex<double> i(0., 1.);
    return (pow(c,2) -1.) *pow(c -2. -i, 2) /(pow(c,2) +2. +2. *i);
}
 
int main(){
    const int dimx = 800; const int dimy = 800;
    const double rmi = -3; const double rma =  3;
    const double imi = -3; const double ima =  3;
 
    ofstream f("complex.ppm", ios::binary);
    f << "P6" << endl
      << dimx << " " << dimy << endl
      << "255" << endl;
 
    for(int j=0; j < dimy; ++j){
        double im = ima - (ima -imi) *j /(dimy -1);
        for(int i=0; i < dimx; ++i){		
            double re = rma -(rma -rmi) *i /(dimx -1);
            complex<double> c(re, im);
            complex<double> v = fun(c);	
            double a = arg(v);

            while(a<0) a += 2*PI; a /= 2*PI;
            double m = abs(v);
            double ranges = 0;
            double rangee = 1;

            while(m>rangee){
                ranges = rangee;
                rangee *= E;
            }

            double k   = (m-ranges)/(rangee-ranges);
            double sat = k < 0.5 ? k *2: 1 -(k -0.5) *2;
            sat = 1 - pow(1-sat, 3); sat = 0.4 + sat*0.6;

            double val = k < 0.5 ? k *2: 1 -(k -0.5) *2; val = 1 - val;
            val = 1 - pow(1-val, 3); val = 0.6 + val*0.4;

            unsigned char color[3];
            SetHSV(a,sat,val,color);
            f.write((const char*)color,3);
        }
    }
    return 0;
}

C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>// floor 

/* 
based on 
c++ program from :
[[:File:Color_complex_plot.jpg]]
by  	Claudio Rocchini

gcc d.c -lm -Wall

http://en.wikipedia.org/wiki/Domain_coloring



*/
 
const double PI = 3.1415926535897932384626433832795;
const double E  = 2.7182818284590452353602874713527;
 

/*

complex domain coloring 
Given a complex number z=re^{ i \theta}, 


hue represents the argument ( phase, theta ), 

sat and value represents the modulus

*/
int GiveHSV( double complex z, double HSVcolor[3] )
{
 //The HSV, or HSB, model describes colors in terms of hue, saturation, and value (brightness).
 
 // hue = f(argument(z))
 //hue values range from .. to ..
 double a = carg(z); //
 while(a<0) a += 2*PI; a /= 2*PI;


 // radius of z
 double m = cabs(z); // 
 double ranges = 0;
 double rangee = 1;
 while(m>rangee){
   ranges = rangee;
   rangee *= E;
      }
 double k = (m-ranges)/(rangee-ranges);

 // saturation = g(abs(z))
 double sat = k<0.5 ? k*2: 1 - (k-0.5)*2;
 sat = 1 - pow( (1-sat), 3); 
 sat = 0.4 + sat*0.6;

 // value = h(abs(z))
 double val = k<0.5 ? k*2: 1 - (k-0.5)*2; 
   val = 1 - val;
   val = 1 - pow( (1-val), 3); 
   val = 0.6 + val*0.4;
 
 HSVcolor[0]= a;
 HSVcolor[1]= sat;
 HSVcolor[2]= val;
return 0;
}
  
 
int GiveRGBfromHSV( double HSVcolor[3], unsigned char RGBcolor[3] ) {
        double r,g,b;
        double h; double s; double v;
        h=HSVcolor[0]; // hue 
        s=HSVcolor[1]; //  saturation;
        v = HSVcolor[2]; // = value;

        if(s==0)
                r = g = b = v;
        else {
                if(h==1) h = 0;
                double z = floor(h*6); 
                int i = (int)z;
                double f = (h*6 - z);
                double p = v*(1-s);
                double q = v*(1-s*f);
                double t = v*(1-s*(1-f));
                switch(i){
                        case 0: r=v; g=t; b=p; break;
                        case 1: r=q; g=v; b=p; break;
                        case 2: r=p; g=v; b=t; break;
                        case 3: r=p; g=q; b=v; break;
                        case 4: r=t; g=p; b=v; break;
                        case 5: r=v; g=p; b=q; break;
                }
        }
        int c;
        c = (int)(256*r); if(c>255) c = 255; RGBcolor[0] = c;
        c = (int)(256*g); if(c>255) c = 255; RGBcolor[1] = c;
        c = (int)(256*b); if(c>255) c = 255; RGBcolor[2] = c;
  return 0;
}

int GiveRGBColor( double complex z, unsigned char RGBcolor[3])
{
  static double HSVcolor[3];
  GiveHSV( z, HSVcolor );
  GiveRGBfromHSV(HSVcolor,RGBcolor);
  return 0;
}

//  
double complex fun(double complex c ){
  return (cpow(c,2)-1)*cpow(c-2.0- I,2)/(cpow(c,2)+2+2*I);} // 
 
int main(){
        // screen (integer ) coordinate
        const int dimx = 800; const int dimy = 800;
        // world ( double) coordinate
        const double reMin = -2; const double reMax =  2;
        const double imMin = -2; const double imMax =  2;
        
        static unsigned char RGBcolor[3];
        FILE * fp;
        char *filename ="complex.ppm";
        fp = fopen(filename,"wb");
        fprintf(fp,"P6\n%d %d\n255\n",dimx,dimy);
 


        int i,j;
        for(j=0;j<dimy;++j){
                double im = imMax - (imMax-imMin)*j/(dimy-1);
                for(i=0;i<dimx;++i){            
                        double re = reMax - (reMax-reMin)*i/(dimx-1);
                        double complex z= re + im*I; // 
                        double complex v = fun(z); //     
                        GiveRGBColor( v, RGBcolor);
                        
                        fwrite(RGBcolor,1,3,fp);
                }
        }
        fclose(fp);
        printf("OK - file %s saved\n", filename);

        return 0;
}

Licencja

Ja, właściciel praw autorskich do tego dzieła, udostępniam je na poniższych licencjach
GNU head Udziela się zgody na kopiowanie, rozpowszechnianie oraz modyfikowanie tego dokumentu zgodnie z warunkami GNU Licencji Wolnej Dokumentacji, w wersji 1.2 lub nowszej opublikowanej przez Free Software Foundation; bez niezmiennych sekcji, bez treści umieszczonych na frontowej lub tylnej stronie okładki. Kopia licencji załączona jest w sekcji zatytułowanej GNU Licencja Wolnej Dokumentacji.
w:pl:Licencje Creative Commons
uznanie autorstwa na tych samych warunkach
Ten plik udostępniony jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 3.0.
Wolno:
  • dzielić się – kopiować, rozpowszechniać, odtwarzać i wykonywać utwór
  • modyfikować – tworzyć utwory zależne
Na następujących warunkach:
  • uznanie autorstwa – musisz określić autorstwo utworu, podać link do licencji, a także wskazać czy utwór został zmieniony. Możesz to zrobić w każdy rozsądny sposób, o ile nie będzie to sugerować, że licencjodawca popiera Ciebie lub Twoje użycie utworu.
  • na tych samych warunkach – Jeśli zmienia się lub przekształca niniejszy utwór, lub tworzy inny na jego podstawie, można rozpowszechniać powstały w ten sposób nowy utwór tylko na podstawie tej samej lub podobnej licencji.
Ten szablon został dodany jako element zmiany licencjonowania.
w:pl:Licencje Creative Commons
uznanie autorstwa
Ten plik udostępniony jest na licencji Creative Commons Uznanie autorstwa 2.5.
Wolno:
  • dzielić się – kopiować, rozpowszechniać, odtwarzać i wykonywać utwór
  • modyfikować – tworzyć utwory zależne
Na następujących warunkach:
  • uznanie autorstwa – musisz określić autorstwo utworu, podać link do licencji, a także wskazać czy utwór został zmieniony. Możesz to zrobić w każdy rozsądny sposób, o ile nie będzie to sugerować, że licencjodawca popiera Ciebie lub Twoje użycie utworu.
Możesz wybrać, którą licencję chcesz zastosować.

Podpisy

Dodaj jednolinijkowe objaśnienie tego, co ten plik pokazuje
Color wheel graph of the function f(x) = (x^2 − 1)(x + 2 − i)2 / (x^2 + 2 - 2i).

Obiekty przedstawione na tym zdjęciu

przedstawia

image/jpeg

c0f2c797263ef24ef3cb2d39a22f86ee3e4ca071

208 178 bajt

800 piksel

800 piksel

Historia pliku

Kliknij na datę/czas, aby zobaczyć, jak plik wyglądał w tym czasie.

Data i czasMiniaturaWymiaryUżytkownikOpis
aktualny00:06, 23 mar 2013Miniatura wersji z 00:06, 23 mar 2013800 × 800 (203 KB)YourmomblahHigher quality
10:46, 7 sie 2007Miniatura wersji z 10:46, 7 sie 2007800 × 800 (59 KB)Rocchini{{Information |Description=Color plot of complex function (x^2-1) * (x-2-I)^2 / (x^2+2+2I), hue represents the argument, sat and value represents the modulo |Source=Own work |Date=2007-08-07 |Author=Claudio Rocchini |Permission=CC-BY 2.5 }}

Globalne wykorzystanie pliku

Ten plik jest wykorzystywany także w innych projektach wiki:

Pokaż listę globalnego wykorzystania tego pliku.