Przejdź do zawartości

Wikipedysta:Yusek/Matematyka dyskretna/Problem hetmanów i wież

Z Wikibooks, biblioteki wolnych podręczników.

Wstęp

[edytuj]

Problem hetmanów to zagadka matematyczno-szachowa. W problemie tym chodzi o to by ustawić na szachownicy nxn jak najwięcej hetmanów (najlepiej n) by się wzajemnie nie atakowały. W najklasyczniejszej formie hetmany rozmieszcza się na szachownicy 8x8. Problem hetmanów został poraz pierwszy sformuowany przez Maxa Bezzela w 1848. Przez wiele lat wielu matematyków zajmowało się problemem, szukając liczby rozwiązań na szachownicy nxn gdzie znajduje się n hetmanów.

Rozbudowany problem hetmanów

[edytuj]

W rozbudowanym problemie hetmanów szukamy tylko rozwiązań które nie powstały przez odbicie symetryczne (przez przekątną, oś lub srodek szachownicy) lub przez obrót.

Problem wież

[edytuj]

W problemie wież zamiast hetmanów ustawiamy wieże jest to o tyle łatwiesze że wieże nie atakują po przekątnych przez co ilość rozwiązań jest znacznie większa. Na klasycznej planszy 8x8 rozwiązań problemu 8 hetmanów jest 12, natomiast wież 8! - pomimo, że różnych rozwiązań problemu 8 wież jest 5282.