R (język programowania)/Analiza przeżyć
Wygląd
Analiza przeżyć ( ang. Survival analysis)[1]
Pakiety
[edytuj]- survival = podstawowy pakiet
- KMsurv = dodatkowe materiały z książki Klein and Moeschberger : "Survival Analysis, Techniques for Censored and Truncated Data", Springer (1997)
- funkcja ggsurv [2]
- OIsurv = dodatkowe materiału ze strony www.openintro.org
- survMisc [3][4]
survival
[edytuj]Ładujemy biblkiotekę [5]
library(survival) #
Sprawdzamy :
library(help=survival) # see the version number, list of available functions and data sets.
Przykładowy wynik :
Informacja dotycząca pakietu ‘survival’ Opis: Title: Survival Analysis Maintainer: Terry Therneau <therneau.terry@mayo.edu> Priority: recommended Package: survival Version: 2.37-4 Date: 2013-02-26 Depends: stats, utils, graphics, splines, R (>= 2.13.0) LazyData: Yes LazyLoad: Yes ByteCompile: Yes Authors@R: c(person(c("Terry", "M"), "Therneau", email="therneau.terry@mayo.edu", role=c("aut", "cre")), person("Lumley", "Thomas", role=c("ctb", "trl"), comment="original S->R port and maintainer until 2009")) Author: Terry Therneau Description: survival analysis: descriptive statistics, two-sample tests, parametric accelerated failure models, Cox model. Delayed entry (truncation) allowed for all models; interval censoring for parametric models. Case-cohort designs. License: LGPL (>= 2) URL: http://r-forge.r-project.org Packaged: 2013-02-26 17:19:25 UTC; therneau NeedsCompilation: yes Repository: CRAN Date/Publication: 2013-02-26 19:03:03 Built: R 3.0.0; x86_64-pc-linux-gnu; 2013-04-29 18:21:29 UTC; unix Indeks: Surv Create a Survival Object aareg Aalen's additive regression model for censored data aml Acute Myelogenous Leukemia survival data anova.coxph Analysis of Deviance for a Cox model. attrassign Create new-style "assign" attribute basehaz Compute the baseline survival curve for a Cox model bladder Bladder Cancer Recurrences cch Fits proportional hazards regression model to case-cohort data cgd Chronic Granulotomous Disease data clogit Conditional logistic regression cluster Identify clusters. colon Chemotherapy for Stage B/C colon cancer cox.zph Test the Proportional Hazards Assumption of a Cox Regression coxph Fit Proportional Hazards Regression Model coxph.control Ancillary arguments for controling coxph fits coxph.detail Details of a Cox Model Fit coxph.object Proportional Hazards Regression Object dsurvreg Distributions available in survreg. frailty Random effects terms heart Stanford Heart Transplant data is.ratetable Verify that an object is of class ratetable. kidney Kidney catheter data lines.survfit Add Lines or Points to a Survival Plot logan Data from the 1972-78 GSS data used by Logan lung NCCTG Lung Cancer Data mgus Monoclonal gammapothy data model.frame.coxph Model.frame method for coxph objects model.matrix.coxph Model.matrix method for coxph models nwtco Data from the National Wilm's Tumor Study ovarian Ovarian Cancer Survival Data pbc Mayo Clinic Primary Biliary Cirrhosis Data pbcseq Mayo Clinic Primary Biliary Cirrhosis, sequential data plot.aareg Plot an aareg object. plot.cox.zph Graphical Test of Proportional Hazards plot.survfit Plot method for 'survfit' objects predict.coxph Predictions for a Cox model predict.survreg Predicted Values for a 'survreg' Object print.aareg Print an aareg object print.summary.coxph Print method for summary.coxph objects print.summary.survexp Print Survexp Summary print.summary.survfit Print Survfit Summary print.survfit Print a Short Summary of a Survival Curve pspline Smoothing splines using a pspline basis pyears Person Years quantile.survfit Quantiles from a survfit object ratetable Ratetable reference in formula ratetableDate Convert date objects to ratetable form rats Rat treatment data from Mantel et al rats2 Rat data from Gail et al. residuals.coxph Calculate Residuals for a 'coxph' Fit residuals.survreg Compute Residuals for 'survreg' Objects ridge Ridge regression stanford2 More Stanford Heart Transplant data strata Identify Stratification Variables summary.aareg Summarize an aareg fit summary.coxph Summary method for Cox models summary.survexp Summary function for a survexp object summary.survfit Summary of a Survival Curve survConcordance Compute a concordance measure. survSplit Split a survival data set at specified times survdiff Test Survival Curve Differences survexp Compute Expected Survival survexp.fit Compute Expected Survival survexp.us Census Data Sets for the Expected Survival and Person Years Functions survfit Create survival curves survfit.coxph Compute a Survival Curve from a Cox model survfit.formula Compute a Survival Curve for Censored Data survfit.object Survival Curve Object survfitcoxph.fit A direct interface to the 'computational engine' of survfit.coxph survobrien O'Brien's Test for Association of a Single Variable with Survival survreg Regression for a Parametric Survival Model survreg.control Package options for survreg and coxph survreg.distributions Parametric Survival Distributions survreg.object Parametric Survival Model Object survregDtest Verify a survreg distribution tcut Factors for person-year calculations tobin Tobin's Tobit data tt Mark time tranform terms untangle.specials Help Process the 'specials' Argument of the 'terms' Function. uspop2 Projected US Population veteran Veterans' Administration Lung Cancer study Dalsza informacja jest dostępna w następujących ilustracjach w katalogu ‘/usr/lib/R/library/survival/doc’: timedep: Using Time Dependent Covariates (source, pdf)
Pamiętaj o wyjściu za pomocą
:q
Funkcje
[edytuj]Najważniejsze funkcja :
- Surv ( Survival object = the data has to be in the proper format )
- survfit ( Kaplan-Meier estimates )[6]
- survdiff (The log-rank test )
- coxph (The Cox proportional hazards model )
- survreg (The Accelerated failure time model )
Surv {survival}
[edytuj]Surv (czas, zdarzenie)
gdzie : [7]
- czas (ang. follow-up time) to zmienna reprezentująca długość czasu obserwacji obiektów
- wydarzenie( ang. event status indicator) to zmienna logiczna ( zero-jedynkowa, binarna, nie/tak, 0/1) określająca, czy dla danego obiektu ze zbioru danych wystąpiło w okresie obserwacji badane zdarzenie;
dane
[edytuj]Jak przygotować dane ? [8]
aml
[edytuj]Ładujemy dane aml
data(aml)
w nowszych wersjach pakietu otrzymujemy błąd :
Komunikat ostrzegawczy: In data(aml) : zbiór danych ‘aml’ nie został znaleziony
pomimo że dane są w pakiecie. Jest spowodowane użyciem lazyData[9]. Sprawdzamy :
exists('aml')
przykładowy wynik :
[1] TRUE
wczytujemy i oglądamy dane :
aml
wynik :
time status x 1 9 1 Maintained 2 13 1 Maintained 3 13 0 Maintained 4 18 1 Maintained 5 23 1 Maintained 6 28 0 Maintained 7 31 1 Maintained 8 34 1 Maintained 9 45 0 Maintained 10 48 1 Maintained 11 161 0 Maintained 12 5 1 Nonmaintained 13 5 1 Nonmaintained 14 8 1 Nonmaintained 15 8 1 Nonmaintained 16 12 1 Nonmaintained 17 16 0 Nonmaintained 18 23 1 Nonmaintained 19 27 1 Nonmaintained 20 30 1 Nonmaintained 21 33 1 Nonmaintained 22 43 1 Nonmaintained 23 45 1 Nonmaintained
Wykresy
[edytuj]Wykres Kaplan-Meier : [10]
fit <- survfit(Surv(time, status) ~ x, data = aml)
plot(fit, lty = 2:3)
legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)
library(survival)
time = c(1, 12, 22, 29, 31, 36, 38, 50, 60, 61, 70, 88, 99, 110, 140)
event = c(0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)
fit = survfit( Surv(time, event)~1 )
plot(fit, main="Estymator Kaplane-Meiera", xlab="t = Czas ( dni)", ylab="S(t) = Prawdopodobieństwo")
Przykłady:
Źródła
[edytuj]- ↑ Analiza przeżycia w wikipedii
- ↑ Creating good looking survival curves – the 'ggsurv' function by Edwin Thoen
- ↑ survMisc
- ↑ Plotting survival curves in R with ggplot2
- ↑ Use Software R to do Survival Analysis and Simulation by Mai Zhou
- ↑ Compute a Survival Curve for Censored Data
- ↑ Survival Analysis - analiza przeżyć. Statystyka Medyczna : Branicka, Pękalski
- ↑ How to Make Survival Analysis Variables in R by Monika Wahi
- ↑ Loading data from a program
- ↑ survfit.formula {survival}
- ↑ Drawing survival curves in R
- ↑ How to Plot a Survival Curve (or Two) in R by Monika Wahi