Zad 1.1 [ ∬ D x y d x d y {\displaystyle [\iint \limits _{D}xydxdy} na prostokącie 0 ≤ y ≤ 5 , 0 ≤ x ≤ 4 ] = 100 {\displaystyle 0\leq y\leq 5,0\leq x\leq 4]=100} Zad 1.2 [ ∬ D x 2 + y 2 d x d y {\displaystyle [\iint \limits _{D}x^{2}+y^{2}dxdy} na prostokącie 0 ≤ y ≤ 1 , 0 ≤ x ≤ 1 ] = 1 3 {\displaystyle 0\leq y\leq 1,0\leq x\leq 1]={\frac {1}{3}}} Zad 1.3 [ ∬ D x y + y 2 d x d y {\displaystyle [\iint \limits _{D}xy+y^{2}dxdy} na prostokącie 1 ≤ y ≤ 4 , 2 ≤ x ≤ 5 ] = 141 , 75 {\displaystyle 1\leq y\leq 4,2\leq x\leq 5]=141,75} Zad 1.4 [ ∬ D ( a r c s i n ( x ) + a r c s i n ( y ) ) d x d y {\displaystyle [\iint \limits _{D}(arcsin(x)+arcsin(y))dxdy} na prostokącie − 1 ≤ y ≤ 1 , − 1 ≤ x ≤ 1 ] = 0 {\displaystyle -1\leq y\leq 1,-1\leq x\leq 1]=0} Zad 1.5 [ ∬ D ( a r c s i n ( x ) + a r c s i n ( y ) ) d x d y {\displaystyle [\iint \limits _{D}(arcsin(x)+arcsin(y))dxdy} na prostokącie 0 ≤ y ≤ 1 , 0 ≤ x ≤ 1 ] = π 2 {\displaystyle 0\leq y\leq 1,0\leq x\leq 1]={\frac {\pi }{2}}}