Przejdź do zawartości

Liczby zespolone/Postać algebraiczna

Z Wikibooks, biblioteki wolnych podręczników.

Postać algebraiczna

[edytuj]
?

Wróćmy jednak do liczb rzeczywistych i przypomnijmy sobie rozważania na temat pierwiastków liczb ujemnych otrzymywanych przy rozwiązywaniu równań kwadratowych. Liczby te miały nieporęczną postać sumy pewnej liczby rzeczywistej z pierwiastkiem liczby ujemnej.

Po wprowadzeniu jednostki urojonej i postać ta stała się bardziej klarowna - jednoznacznie określała bowiem rozdzielność obu typów liczb, w sposób zbliżony do popularnego do dziś sposobu realizacji równań funkcji 2 zmiennych X i Y w układzie kartezjańskim. Szybko zauważymy, że zmieniając wartości rzeczywiste na osi Re, liczba zespolona z na płaszczyźnie przesunie się jedynie w poziomie bez zmian w części urojonej - i na odwrót: zmieniając parametry na osi urojonej Im liczba zespolona przesunie się na wykresie jedynie w pionie, bez zmian części rzeczywistej. Przykładowo jeśli znajdując na osi rzeczywistej liczbę a=3 dodamy do niej liczbę urojoną bi=2i znajdziemy się w punkcie liczby zespolonej o współrzędnych .

Stąd też jeśli a jest częścią rzeczywistą liczby z określoną jako Re(z), oraz b cześcią urojoną liczby zespolonej określaną jako Im(z) to:

z = Re(z) + Im(z)·i

Każdą liczbę zespoloną można więc przedstawić w postaci algebraicznej:

, gdzie
(postać algebraiczna liczby zespolonej)

Poprzednią definicję zbioru liczb zespolonych możemy więc rozszerzyć o stwierdzenie że:

Obie te postaci są ze sobą równoważne i są ściśle ze sobą związane.

Warto również zauważyć, że liczby postaci lub (0,b), gdzie z pominięciem zera - punktu (0,0), zwykło nazywać się czysto urojonymi (0 jest liczbą rzeczywistą).

Następny rozdział: Sprzężenie liczby. Poprzedni rozdział: Liczby zespolone.

Podręcznik: Liczby zespolone.