Wikipedysta:Adam majewski

Z Wikibooks, biblioteki wolnych podręczników.
Przejdź do nawigacji Przejdź do wyszukiwania
13 Ten wikipedysta edytuje polskojęzyczną Wikibooks od 13 lat, 0 miesięcy i 27 dni.
Obliczono 27 września 2022.
pl Polski jest językiem ojczystym tego użytkownika.
en-2 This user can read and write intermediate English.


Moja strona domowa ( angielska).

Wikipedia-logo.png Wikipedia - Adam majewski

Commons-logo.svg Commons - Adam majewski

Przydatne linki

admin - import

spr. - NPA

grafika komputerowa[edytuj]

  • tablica ( matrix) 2d i uzycie kernel


sudo apt-get install libsfml-dev
sudo apt-get install libcsfml-dev

błędy w obliczeniach numerychnych[edytuj]

Avoiding loss of significance[edytuj]

Although the quadratic formula provides an exact solution, the result is not exact if real numbers are approximated during the computation, as usual in numerical analysis, where real numbers are approximated by floating point numbers (called "reals" in many programming languages). In this context, the quadratic formula is not completely stable.

This occurs when the roots have different order of magnitude, or, equivalently, when b2 and b2 − 4ac are close in magnitude. In this case, the subtraction of two nearly equal numbers will cause loss of significance or catastrophic cancellation in the smaller root. To avoid this, the root that is smaller in magnitude, r, can be computed as where R is the root that is bigger in magnitude.

A second form of cancellation can occur between the terms b2 and 4ac of the discriminant, that is when the two roots are very close. This can lead to loss of up to half of correct significant figures in the roots.[1][2]

Roots of a quadratic (ax2 + bx + c)

If x1 ≈ 0 and x2 >> 0, then the quadratic formula is unstable.

Computing x2 by the quadratic formula and then setting x1 = cx2 / a is stable.

Przykład 2[edytuj]

Innym przykładem na to, że nawet najprostsze algorytmy mogą być źle uwarunkowane jest „szkolny” algorytm obliczania pierwiastków równania kwadratowego

W sposobie obliczenia jednego z pierwiastków jest odejmowanie. Możliwa jest sytuacja, w której wartość i mogą być dość bliskie zeru co do modułu - nastąpi utrata cyfr znaczących.

Rozwiązanie Sposobem na ominięcie tego problemu mogą być Wzory Viète’a - dobrze uwarunkowany pierwiastek może być obliczony „wprost”, drugi otrzymany ze wzoru Viète’a. Należy również zauważyć, że możemy mieć tutaj tutaj do czynienia z dwoma przypadkami tj. b>=0 oraz b<0. Dla pierwszego przypadku dobrze uwarunkowanym będzie pierwiastek pierwszy, a dla drugiego przypadku dobrze uwarunkowanym będzie pierwiastek drugi.

Instability of the quadratic equation[edytuj]

For example, consider the quadratic equation

with the two exact solutions:

This formula may not always produce an accurate result. For example, when is very small, loss of significance can occur in either of the root calculations, depending on the sign of .

The case , , will serve to illustrate the problem:

We have

In real arithmetic, the roots are

In 10-digit floating-point arithmetic:

Notice that the solution of greater magnitude is accurate to ten digits, but the first nonzero digit of the solution of lesser magnitude is wrong.

Because of the subtraction that occurs in the quadratic equation, it does not constitute a stable algorithm to calculate the two roots.

A better algorithm[edytuj]

A careful floating-point computer implementation combines several strategies to produce a robust result. Assuming that the discriminant b2 − 4ac is positive, and b is nonzero, the computation would be as follows:[3]

Here sgn denotes the sign function, where is 1 if is positive, and −1 if is negative. This avoids cancellation problems between and the square root of the discriminant by ensuring that only numbers of the same sign are added.

To illustrate the instability of the standard quadratic formula compared this formula, consider a quadratic equation with roots and . To 16 significant digits, roughly corresponding to double-precision accuracy on a computer, the monic quadratic equation with these roots may be written as

Using the standard quadratic formula and maintaining 16 significant digits at each step, the standard quadratic formula yields

Note how cancellation has resulted in being computed to only 8 significant digits of accuracy.

The variant formula presented here, however, yields the following:

Note the retention of all significant digits for .

Note that while the above formulation avoids catastrophic cancellation between and , there remains a form of cancellation between the terms and of the discriminant, which can still lead to loss of up to half of correct significant digits.[1][2] The discriminant needs to be computed in arithmetic of twice the precision of the result to avoid this (e.g. quad precision if the final result is to be accurate to full double precision).[4] This can be in the form of a fused multiply-add operation.[1]

To illustrate this, consider the following quadratic equation, adapted from Kahan (2004):[1]

This equation has and roots

However, when computed using IEEE 754 double-precision arithmetic corresponding to 15 to 17 significant digits of accuracy, is rounded to 0.0, and the computed roots are

which are both false after the 8-th significant digit. This is despite the fact that superficially, the problem seems to require only 11 significant digits of accuracy for its solution.

Przydatne strony[edytuj]

(Skopiowałem ze strony Karola Dąbrowskiego)

  • <syntaxhighlight lang="c">...</syntaxhighlight>


git add[edytuj]

git add is a multipurpose command – you use it to begin tracking new files, to stage files, and to do other things like marking merge-conflicted files as resolved. I

git patch[edytuj]

How to contribute your changes (bug fixes, new features, ...):

git checkout master git pull git checkout -b my-new-stuff

  1. edit files, make changes

git add your-changed-files git commit

  1. write a short description, the first line is the most important

git format-patch master

  1. then email the patches as attachments

Try to split each distinct set of changes into different commits (eg: a bug fix in one file and a new feature in another file should be two commits). On the other hand, changes in multiple files for the same bug-fix or feature should be in one commit. Make sure it compiles before you commit, and preferably make sure it runs and does the right things without breaking other stuff.

Alternatively to git format-patch and emailing, make your repository available online. has tools for forking repositories and submitting merge requests, though I've not used them much so can't offer any tips.


c= 1/4
zf= z = 0.499999996905453  +0.000000000000000 i
z = 0.503446319355695  +0.000195822466591 i
z = 0.501859335396733  +0.000051833858094 i
z = 0.504519704479711  +0.000098150630449 i


  • aint(x) returns the integral value between x and 0, nearest x.
  • anint(x) returns the nearest integral value to x, except halfway cases are rounded to the integral value larger in magnitude.
  • Nearest Integer Function = nint(x) converts x into int format rounding to the nearest int value, except halfway cases are rounded to the int value larger in magnitude.



  • typ
    • statyczne (
    • dynamiczne (
  • wymiar
    • jednowymiarowe (1D , wektor)
    • dwuwymiarowe ( 2D , macierz , ang. matrix)
      • wielowymiarowe
  • operacje na tablicach
    • deklaracja
    • initializacja
    • użycie
    • usunięcie
  • ???
    • Flexible array member =
    • variable-length array = VLA, runtime-sized

analiza programu w języku Haskell[edytuj]

-- Haskell code by Claude Heiland-Allen

import Control.Monad (forM_)
import Data.List (genericTake, genericDrop, intercalate)
import Data.Fixed (mod')
import Data.Ratio ((%), numerator, denominator)
import Numeric (readInt)
import System.Environment (getArgs)

type InternalAngle = Rational

type ExternalAngle = ([Bool], [Bool])

pretty :: ExternalAngle -> String
pretty (pre, per) =  bits pre ++ "(" ++ bits per ++")"

bits :: [Bool] -> String
bits = map bit

bit :: Bool -> Char
bit False = '0'
bit True = '1'

binary :: [Bool] -> Integer
binary [] = 0
binary s = case readInt 2 (`elem`"01") (\c -> case c of '0' -> 0 ; '1' -> 1) (bits s) of
  [(b, "")] -> b

rational :: ExternalAngle -> Rational
rational (pre, per) = (binary pre % 2^p) + (binary per % (2^p * (2^q - 1)))
    p = length pre
    q = length per

bulb :: InternalAngle -> (ExternalAngle, ExternalAngle)
bulb pq = (([], bs ++ [False, True]), ([], bs ++ [True, False]))
    q = denominator pq
      = genericTake (q - 2)
      . map (\x -> 1 - pq < x && x < 1)
      . iterate (\x -> (x + pq) `mod'` 1)
      $ pq

hub :: InternalAngle -> [ExternalAngle]
hub pq =
  [ (sm, shift k sp) | k <- [0, b .. (q - p - 1) * b] ] ++
  [ (sp, shift k sp) | k <- [(q - p) * b, (q - p + 1) * b .. (q - 1) * b] ]
    p = numerator pq
    q = denominator pq
    (([], sm), ([], sp)) = bulb pq
    (ab, cd) = parents pq
    b = denominator ab
    shift k = genericTake q . genericDrop k . cycle -- 

parents :: InternalAngle -> (InternalAngle, InternalAngle)
parents pq = go q 1 0 p 0 1
    p = numerator pq
    q = denominator pq
    go r1 s1 t1 r0 s0 t0
      | r0 == 0 =
          let ab = - s1 % t1
              a = numerator ab
              b = denominator ab
              c = p - a
              d = q - b
              cd = c % d
          in  (min ab cd, max ab cd)
      | otherwise =
          let (o, r) = divMod r1 r0
              s = s1 - o * s0
              t = t1 - o * t0
          in  go r0 s0 t0 r s t

main :: IO ()
main = do
  [sp, sq] <- getArgs
  p <- readIO sp
  q <- readIO sq
  let pq = p % q
      (lo, hi) = bulb pq
      hs = hub pq
  putStrLn $ "internal angle p/q = " ++ sp ++ " / " ++ sq 
  putStrLn $ "internal angle in lowest terms = "
  print pq
  putStrLn $ "rays of the bulb:"
  putStrLn $ pretty lo ++ " = " ++ show (rational lo)
  putStrLn $ pretty hi ++ " = " ++ show (rational hi)
  putStrLn $ ""
  putStrLn $ "rays of the hub:"
  forM_ hs $ \h -> putStrLn $ pretty h  --- ++ " = " ++ show (rational h)
  1. 1,0 1,1 1,2 1,3 Szablon:Citation
  2. 2,0 2,1 Szablon:Citation
  3. Szablon:Citation, Section 5.6: "Quadratic and Cubic Equations".
  4. Szablon:Citation